Superintegrable Bertrand Magnetic Geodesic Flows

نویسندگان

چکیده

The problem of description superintegrable systems (i.e., with closed trajectories in a certain domain) the class rotationally symmetric natural mechanical goes back to Bertrand and Darboux. We describe all (in domain slow motions) magnetic geodesic flows. show that sufficiently motions central field on two-dimensional manifold revolution are periodic if only metric has constant scalar curvature is homogeneous, i.e. proportional area form.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Geodesic Flows on Coadjoint Orbits

We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.

متن کامل

Are Hamiltonian Flows Geodesic Flows?

When a Hamiltonian system has a \Kinetic + Potential" structure, the resulting ow is locally a geodesic ow. But there may be singularities of the geodesic structure, so the local structure does not always imply that the ow is globally a geodesic ow. In order for a ow to be a geodesic ow, the underlying manifold must have the structure of a unit tangent bundle. We develop homological conditions ...

متن کامل

Geodesic Information Flows

Homogenising the availability of manually generated information in large databases has been a key challenge of medical imaging for many years. Due to the time consuming nature of manually segmenting, parcellating and localising landmarks in medical images, these sources of information tend to be scarce and limited to small, and sometimes morphologically similar, subsets of data. In this work we...

متن کامل

Equicontinuous Geodesic Flows

This article is about the interplay between topological dynamics and differential geometry. One could ask how many informations of the geometry are carried in the dynamic of the geodesic flow. M. Paternain proved in [6] that an expansive geodesic flow on a surface implies that there are no conjugate points. Instead of regarding notions that describe chaotic behavior (for example expansiveness) ...

متن کامل

Toric Integrable Geodesic Flows

By studying completely integrable torus actions on contact manifolds we prove a conjecture of Toth and Zelditch that toric integrable geodesic flows on tori must have flat metrics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2021

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-021-05654-2